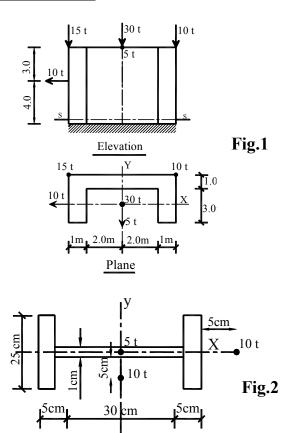
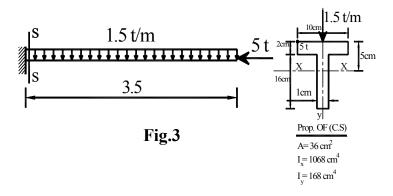
Sohage University
Second Year Civil
Civil Eng Department

Theory of Structures
Faculty of Engineering
Sheet No (3)
2018-2019

NORMAL STRESSES

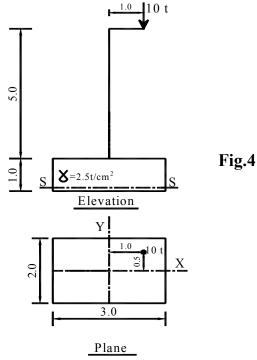
Question.1

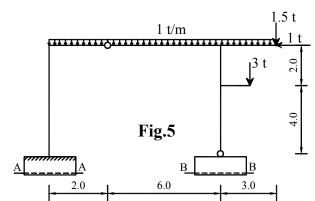

For the structure shown in Fig.1, draw the normal stress distribution at section "S-S" then check the results by means of core. Take the unit weight 2.0 t/m³.


Question.2

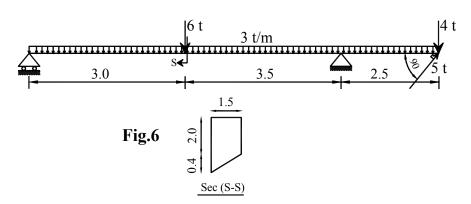
For the cross section shown in Fig.2, draw the normal stress distribution.

Question.1

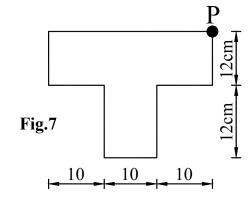

For the structure shown in Fig.3, draw the normal stress distribution at section "S-S" then check the results by means of core.


Question.4

For the structure shown in Fig.4, draw the normal stress distribution at section "S-S" then check the results by means of core.

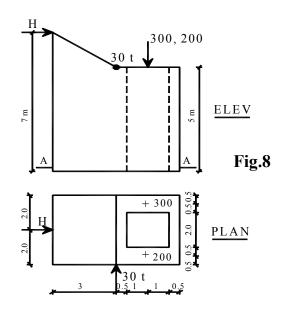

Question.5

For the frame shown in Fig.5, draw the normal stress distribution at section "A-A", "B-B". Each footing has a square cross section of 2 m side length. Weight of the footing is 2.2 t/m³.


Question.6

For the beam shown in Fig.6, draw the normal stress distribution at section "S-S".

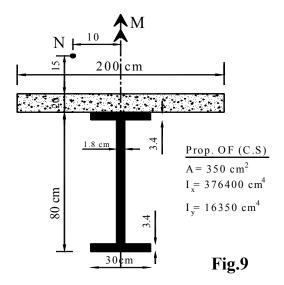
Question.7


The cross section shown in Fig.7 is subjected to a compressive P at the indicated location. Find the maximum value of P so that the maximum compressive stress may not exceed 100 kg/cm² and the maximum tensile stress 20 kg/cm². Check the results using core method.

Question.8

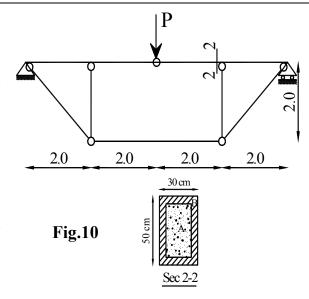
For the structure shown in Fig.8:

- a-Draw the normal stress distribution at sec A-A at the base if H=30t
- b- Determine the maximum value of H if no tensile stress occurs at Sec S-S.
- c- Check the results obtained in the above two cases by means of core.



Question.9

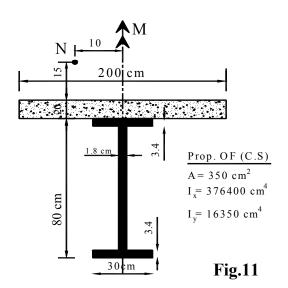
The composite element shown in the Fig.9 consists of steel section having properties as indicated, and a concrete slab 20 cm thick. The modules of elasticity of steel and concrete are 2000 t/cm² and 200 t/cm² respectively. It is required to calculate the stresses induced due to each of the following straining actions, acting as indicated in the Fig.


(i)
$$M = 60 \text{ t.m}$$

(ii)
$$N_1 = -100t$$

Question.10

A simple beam is composed of 2 materials A and B as shown in Fig.10, material A is a rectangular cross section 26×46 cm, $E_A=210$ t/cm², $\sigma_{ten}=20$ t/cm², $\sigma_{comp}=70$ t/cm². Material B is a hollow box section 26×46 cm internal dimension and 30×50 cm external dimension $E_B=2100$ t/cm², $\sigma_{ten}=\sigma_{comp}=1000$ t/cm². Find the normal stress distribution on section 2-2 as a function of P, then find the maximum allowable load P, find also the part of P resisted by Material B.



Question.11

The composite element shown in the Fig consists of steel section having properties as indicated, and a concrete slab 20 cm thick. The modules of elasticity of steel and concrete are 2000 t/cm² and 200 t/cm² respectively. It is required to calculate the stresses induced due to each of the following straining actions, acting as indicated in the Fig.

(i)
$$M = 60 \text{ t.m}$$

(ii)
$$N_1 = -100t$$

